题目内容

(2013•天水)如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是(  )
分析:根据题意可知△AEG≌△BEF≌△CFG三个三角形全等,且在△AEG中,AE=x,AG=2-x;可得△AEG的面积y与x的关系;进而可判断得则y关于x的函数的图象的大致形状.
解答:解:∵AE=BF=CG,且等边△ABC的边长为2,
∴BE=CF=AG=2-x;
∴△AEG≌△BEF≌△CFG.
在△AEG中,AE=x,AG=2-x,
∵S△AEG=
1
2
AE×AG×sinA=
3
4
x(2-x);
∴y=S△ABC-3S△AEG=
3
-3×
3
4
x(2-x)=
3
3
4
x2-
3
2
x+1).
∴其图象为二次函数,且开口向上.
故选C.
点评:本题考查动点问题的函数图象,解答本题的关键是求出y与x的函数关系式,另外要求能根据函数解析式判断函数图象的形状.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网