题目内容
在下列命题中,正确的是 ( )
A. 有一组邻边相等的四边形是菱形 B. 有一个角是直角的四边形是矩形
C. 四个角都相等的四边形是矩形 D. 对角线互相垂直相等的四边形是正方形.
周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:
(1)图中自变量是____,因变量是______;
(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;
(3)小明出发______小时后爸爸驾车出发;
(4)图中A点表示___________________________________;
(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);
(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.
我国南宋数学家杨辉(约13世纪)所著的《祥解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”。根据“杨辉三角”请计算(a+b)18的展开式中第三项的系数为( )
A. 2017 B. 2018 C. 171 D. 153
若关于x的方程无解,则m=_______
关于的方程:的解是, ,解是,则的解是 ( )
A. , B. ,
C. , D. ,
如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D(﹣7,3),点B、C在第二象限内.
(1)求点B的坐标。
(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.
解方程:
下列四种调查:①调查某班学生的身高情况;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某批汽车的抗撞击能力,其中适合用全面调查方式(普查)的是( )
A. ① B. ② C. ③ D. ④
在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=_____.