ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßÓëxÖá½»ÓÚA¡¢BÁ½µã£¨AÔÚBµÄ×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¨0£¬4£©£¬¶¥µãΪ£¨1£¬
£©£®

£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©Èçͼ¢Ù£¬Éè¸ÃÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬ÊÔÔÚ¶Ô³ÆÖáÉÏÕÒ³öµãP£¬Ê¹¡÷CDPΪµÈÑüÈý½ÇÐΣ¬ÇëÖ±½Óд³öÂú×ãÌõ¼þµÄËùÓеãPµÄ×ø±ê£»
£¨3£©Èçͼ¢Ú£¬Á¬½áAC¡¢BC£¬ÈôµãEÊÇÏß¶ÎABÉϵÄÒ»¸ö¶¯µã£¨ÓëµãA¡¢B²»Öغϣ©£¬¹ýµãE×÷EF¡ÎAC½»Ïß¶ÎBCÓÚµãF£¬Á¬½áCE£¬¼Ç¡÷CEFµÄÃæ»ýΪS£¬Çó³öSµÄ×î´óÖµ¼°´ËʱEµãµÄ×ø±ê£®
| 9 | 2 |
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©Èçͼ¢Ù£¬Éè¸ÃÅ×ÎïÏߵĶԳÆÖáÓëxÖá½»ÓÚµãD£¬ÊÔÔÚ¶Ô³ÆÖáÉÏÕÒ³öµãP£¬Ê¹¡÷CDPΪµÈÑüÈý½ÇÐΣ¬ÇëÖ±½Óд³öÂú×ãÌõ¼þµÄËùÓеãPµÄ×ø±ê£»
£¨3£©Èçͼ¢Ú£¬Á¬½áAC¡¢BC£¬ÈôµãEÊÇÏß¶ÎABÉϵÄÒ»¸ö¶¯µã£¨ÓëµãA¡¢B²»Öغϣ©£¬¹ýµãE×÷EF¡ÎAC½»Ïß¶ÎBCÓÚµãF£¬Á¬½áCE£¬¼Ç¡÷CEFµÄÃæ»ýΪS£¬Çó³öSµÄ×î´óÖµ¼°´ËʱEµãµÄ×ø±ê£®
·ÖÎö£º£¨1£©½«Å×ÎïÏߵĶ¥µã´úÈëµ½Å×ÎïÏߵĶ¥µãʽÖеõ½y=a £¨ x-1£©2+
£¬È»ºó½«ÓëyÖá½»ÓÚµãC´úÈëµ½ÉÏʽÖм´¿ÉÇóµÃº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖÊ·Ö±ðµÃ³öPµãµÄ×ø±ê£»
£¨3£©ÇóµÃÅ×ÎïÏßÓëxÖáµÄ½»µã×ø±ê£¬È»ºó¹ýµãF×÷FM¡ÍOBÓÚµãM£¬ÀûÓá÷BEF¡×¡÷BAC¼´¿ÉµÃµ½º¯Êý¹ØÏµÊ½S=-
x2+
x+
£¬Åä·½ºó¼´¿ÉÇóµÃ×î´óÖµ£¬´Ó¶øÇóµÃEµãµÄ×ø±ê£®
| 9 |
| 2 |
£¨2£©ÀûÓõÈÑüÈý½ÇÐεÄÐÔÖÊ·Ö±ðµÃ³öPµãµÄ×ø±ê£»
£¨3£©ÇóµÃÅ×ÎïÏßÓëxÖáµÄ½»µã×ø±ê£¬È»ºó¹ýµãF×÷FM¡ÍOBÓÚµãM£¬ÀûÓá÷BEF¡×¡÷BAC¼´¿ÉµÃµ½º¯Êý¹ØÏµÊ½S=-
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
½â´ð£º
½â£º£¨1£©ÒòΪÅ×ÎïÏߵĶ¥µãΪ£¨1£¬
£©£¬
ËùÒÔÉèÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=a £¨ x-1£©2+
£¬
¡ßÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¨0£¬4£©£¬
¡àa£¨0-1£©2+
=4£®
½âµÃ£ºa=-
£®
¡àËùÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=-
£¨x-1£©2+
£®
£¨2£©Èçͼ¢Ù£¬¹ýµãC×÷CE¡Í¶Ô³ÆÖáÓÚµãE£¬
µ±CD=CP1ʱ£¬¡ßµãC£¨0£¬4£©£¬¶¥µãΪ£¨1£¬
£©£¬
¡àCD=
=
£¬DE=4£¬
¡àCP1=
£¬EP1=4£¬
¡àP1µÄ×ø±êΪ£º£¨1£¬8£©£¬
µ±CD=DP2ʱ£¬P2µÄ×ø±êΪ£º£¨1£¬
£©£¬
µ±CP3=DP3ʱ£¬
ÉèCP3=DP3=y£¬
¡àCE2+EP
=CP
£¬
¡à1+£¨4-y£©2=y2£¬
½âµÃ£ºy=
£¬
¡àP3µÄ×ø±êΪ£º£¨1£¬
£©£¬
µ±CD=CP4ʱ£¬
P4µÄ×ø±êΪ£º£¨1£¬-
£©£¬
×ÛÉÏËùÊö£º·ûºÏÌõ¼þµÄËùÓÐPµã×ø±êÊÇ£º
£¨1£¬
£©£¬£¨1£¬-
£©£¬£¨1£¬8£©£¬£¨1£¬
£©£»
£¨3£©Áî-
£¨x-1£©2+
=0£¬
½âµÃ£ºx1=-2£¬x2=4£¬£®
¡àÅ×ÎïÏßy=-
£¨x-1£©2+
ÓëxÖáµÄ½»µãΪA£¨-2£¬0£©£¬B£¨4£¬0£©£®
¹ýµãF×÷FM¡ÍOBÓÚµãM£®
¡ßEF¡ÎAC£¬
¡à¡÷BEF¡×¡÷BAC£®
=
£®
ÓÖ¡ßOC=4£¬AB=6£¬
¡àMF=
¡ÁCO=
EB£®
ÉèEµã×ø±ê£¨x£¬0£©£¬ÔòEB=4-x£®MF=
£¨4-x£©£¬
¡àS=S¡÷BCE-S¡÷BEF=
EB•CO-
EB•MF£¬
=
EB£¨OC-MF£©=
£¨4-x£©[4-
£¨4-x£©]
=-
x2+
x+
=-
£¨x-1£©2+3£®
Qa=-
£¼0£¬
¡àSÓÐ×î´óÖµ£®
µ±x=1ʱ£¬S×î´óÖµ=3£®
´ËʱµãEµÄ×ø±êΪ£¨1£¬0£©£®
| 9 |
| 2 |
ËùÒÔÉèÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=a £¨ x-1£©2+
| 9 |
| 2 |
¡ßÅ×ÎïÏßÓëyÖá½»ÓÚµãC£¨0£¬4£©£¬
¡àa£¨0-1£©2+
| 9 |
| 2 |
½âµÃ£ºa=-
| 1 |
| 2 |
¡àËùÇóÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îªy=-
| 1 |
| 2 |
| 9 |
| 2 |
£¨2£©Èçͼ¢Ù£¬¹ýµãC×÷CE¡Í¶Ô³ÆÖáÓÚµãE£¬
µ±CD=CP1ʱ£¬¡ßµãC£¨0£¬4£©£¬¶¥µãΪ£¨1£¬
| 9 |
| 2 |
¡àCD=
| 42+12 |
| 17 |
¡àCP1=
| 17 |
¡àP1µÄ×ø±êΪ£º£¨1£¬8£©£¬
µ±CD=DP2ʱ£¬P2µÄ×ø±êΪ£º£¨1£¬
| 17 |
µ±CP3=DP3ʱ£¬
ÉèCP3=DP3=y£¬
¡àCE2+EP
2 3 |
2 3 |
¡à1+£¨4-y£©2=y2£¬
½âµÃ£ºy=
| 17 |
| 8 |
¡àP3µÄ×ø±êΪ£º£¨1£¬
| 17 |
| 8 |
µ±CD=CP4ʱ£¬
P4µÄ×ø±êΪ£º£¨1£¬-
| 17 |
×ÛÉÏËùÊö£º·ûºÏÌõ¼þµÄËùÓÐPµã×ø±êÊÇ£º
£¨1£¬
| 17 |
| 17 |
| 17 |
| 8 |
£¨3£©Áî-
| 1 |
| 2 |
| 9 |
| 2 |
½âµÃ£ºx1=-2£¬x2=4£¬£®
¡àÅ×ÎïÏßy=-
| 1 |
| 2 |
| 9 |
| 2 |
¹ýµãF×÷FM¡ÍOBÓÚµãM£®
¡ßEF¡ÎAC£¬
¡à¡÷BEF¡×¡÷BAC£®
| MF |
| CO |
| EB |
| AB |
ÓÖ¡ßOC=4£¬AB=6£¬
¡àMF=
| BE |
| AB |
| 2 |
| 3 |
ÉèEµã×ø±ê£¨x£¬0£©£¬ÔòEB=4-x£®MF=
| 2 |
| 3 |
¡àS=S¡÷BCE-S¡÷BEF=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
=-
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 1 |
| 3 |
Qa=-
| 1 |
| 3 |
¡àSÓÐ×î´óÖµ£®
µ±x=1ʱ£¬S×î´óÖµ=3£®
´ËʱµãEµÄ×ø±êΪ£¨1£¬0£©£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĶ¥µã¹«Ê½ºÍÈý½ÇÐεÄÃæ»ýÇ󷨣®ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿