题目内容

已知一元二次方程(m-3)x2+2mx+m+1=0有两个不相等的实数根,并且这两个根又不互为相反数.
(1)求m的取值范围;
(2)当m在取值范围内取最小正偶数时,求方程的根.
(1)方程有不相等的实数根,
△=b2-4ac=4m2-4(m-3)(m+1)>0,
解得m>-
3
2

∵两个根又不互为相反数,
解得m≠0,
故m>-
3
2
且m≠0且m≠3.
(2)当m在取值范围内取最小正偶数时,
m=2时,方程是:-x2+4x+3=0
解得x1=2+
7
x2=2-
7
.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网