题目内容
【题目】如图1,
,
,
.
绕着边
的中点
旋转,
,
分别交线段
于点
.
![]()
(1)观察:①如图2、图3,当
或
时,
________
(填“
”,“
”或“
”)
②如图4,当
时,
________
(填“
”或“
”)
(2)猜想:如图1,当
时,
________
,证明你所得到的结论.
(3)如果
,请求出
的度数和
的值.
【答案】(1)①= ②> (2)>,见解析 (3)15°;![]()
【解析】
(1)①根据直角三角形斜边中线的性质可得CD=AD=BD=
AB,分
或
时两种情况,可得AM=0或CK=0,即可得出
;
②由∠BDC=60°可知∠ADC=120°,根据∠CDF=30°可求出∠ADM=30°,可得AM=DM,CK=KD,根据三角形的三边关系即可得答案;
(2)如图,作点C关于FD的对称点G,连接GK,GM,GD.根据直角三角形斜边中线的性质及等腰三角形的性质可证明
,利用SAS可证明△ADM≌△GDM,根据全等三角形的性质可得GM=AM,根据三角形三边关系即可得答案;
(3)根据勾股定理的逆定理求得∠GKM=90°,由轴对称的性质可得∠CKG=90°,∠FKC=
∠CKG=45°,根据三角形的外角定理,可得∠CDF=15°;在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,可得∠GMK=30°,利用余弦的定义可得
=cos30°,即可得答案.
(1)①∵在
中,
是
的中点,∠ACB=90°,∠A=30°,
∴
,
,
∴
,
如图,当
时,
,点A与点M重合,
∵AD=CD,
∴CK=MK,
∵AM=0,
∴AM+CK=MK,
![]()
如图,当∠CDF=0°时,
∵△ABC≌△EDF,
∴DF=BC,∠EDF=∠B=60°,
∴DF=CD,即点C与点F、K重合,
∵∠ACD=30°,∠EDF=60°,
∴∠CDM=90°,
∴AM=MK,
∵CK=0,
∴![]()
![]()
综上所述:
,
故答案为:=
②由①,得
,
,
∴∠ADC=120°,
∵
,
,
,
∴
,
∴
,![]()
∴![]()
∴在
中
(两边之和大于第三边).
(2)作点
关于
的对称点
,连接
,
,
,则
,
,![]()
∵
是
的中点,
∴
,
∴
,
,
∴
,
∵
,
∴
,
∴
,
在△ADM和△GDM中,
,
∴
,
∴
,
∵
,
∴![]()
![]()
(3)如图,由(2),得
,![]()
∵
,
∴
,
∴
,
∵点
关于
的对称点为
,
∴
,
,
由(1)可知:
,
∵
,
∴
,
在
中,
,
∴
,
∴GK=
MG,
∴MK=
=
GM,
∴
,
∴
,
![]()
综上可得:
的度数为
,
的值为
.