题目内容


我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图(如图).

(1)请你求出该班的总人数,并补全频数分布直方图;

(2)表示“足球”所在扇形的圆心角是多少度?

(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.


解:(1)该班总人数是:12÷24%=50(人),

则E类人数是:50×10%=5(人),

A类人数为:50﹣(7+12+9+5)=17(人).

补全频数分布直方图如下:       ……3分

(2)×360°=50.4°

∴表示“足球”所在扇形的圆心角是50.4°.                  ……4分

(3)画树状图如下:

或列表如下:

共有12种等可能的情况,其中恰好1人选修篮球,1人选修足球的有4种,

则选出的2人恰好1人选修篮球,1人选修足球的概率是:=.       ……7分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网