题目内容
如图7,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:
(1)D是BC的中点;
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.![]()
证明:(1)∵AB是直径 ∴∠ADB= 90°即AD⊥BC (1分)
又∵AB=AC ∴D是BC的中点 (3分)
(2)在△B
EC与 △ADC中,
∵∠C=∠C ∠CAD=∠CBE (5分)
∴△BEC ∽△ADC (6分)
(3)∵△BEC ∽△ADC ∴
又∵D是BC的中点 ∴2BD=2CD=BC
∴
则
① (7分)
在△BPD与 △ABD中,
有 ∠BDP=∠BDA
又∵AB=AC AD⊥BC
∴∠CAD=∠BAD
又∵∠CAD=∠CBE ∴∠DBP=∠DAB
∴△BPD ∽△ABD (8分)
∴
则
② (9分)
∴由①,②得:![]()
∴
(10分)
练习册系列答案
相关题目