题目内容
(1)如图2,射线OC在∠AOB的内部,OD平分∠AOC,若∠BOD=40°,求∠BOC的度数;
(2)若∠BOD=3∠B0C(∠BOC<45°),且∠AOD=
| 1 | 2 |
分析:(1)根据角平分线的性质得出∠AOC=2∠AOD=60°,进而得出∠BOC=∠AOB-∠AOC即可;
(2)①当射线OC在∠AOB内部时,此时射线OD的位置只有两种可能:i)若射线OD在∠AOC内部,ii)若射线OD在∠AOB外部,
②当射线OD在∠AOB外部时,i)若射线DO在∠AOB内部,ii)若射线OD在∠AOB外部分别求出即可.
(2)①当射线OC在∠AOB内部时,此时射线OD的位置只有两种可能:i)若射线OD在∠AOC内部,ii)若射线OD在∠AOB外部,
②当射线OD在∠AOB外部时,i)若射线DO在∠AOB内部,ii)若射线OD在∠AOB外部分别求出即可.
解答:
解:(1)∵∠AOB=70°,∠BOD=40°,
∴∠AOD=∠AOB-∠BOD=70°-40°=30°,
∵OD是∠AOC的平分线,
∴∠AOC=2∠AOD=60°,
∴∠BOC=∠AOB-∠AOC=10°;
(2)设∠BOC=α,
∴∠BOD=3∠BOC=3α,
依据题意,分两种情况:
①当射线OC在∠AOB内部时,此时射线OD的位置只有两种可能:
i)若射线OD在∠AOC内部,如图2,
∴∠COD=∠BOD-∠BOC=2α,
∵∠AOD=
∠AOC,
∴∠AOD=∠COD=2α,
∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,
∴α=14°,
∴∠BOC=14°;
ii)若射线OD在∠AOB外部,如图3,
∴
∠COD=∠BOD-∠BOC=2α,
∵∠AOD=
∠AOC,
∴∠AOD=
∠COD=
α,
∴∠AOB=∠BOD-∠AOD=3α-
α=
α=70°,
∴α=30°,
∴∠BOC=30°;
②当射线OD在∠AOB外部时,
依据题意,此时射线OC靠近射线OB,
∵∠BOC<45°,∠AOD=
∠AOC,
∴射线OD的位置也只有两种可能:
i)若射线DO在∠AOB内部,如图4,
则∠COD=∠BOC+∠BOD=4α,
∵∠AOD=
∠AOC,
∴∠AOD=∠COD=4α,
∴∠AOB=∠BOD+∠AOD=4α,
∴AOB=∠BOD+∠AOD=3α+4α=7α=70°,
∴α=10°,
∴∠BOC=10°
ii)若射线OD在∠AOB外部,如图5,
则∠COD=∠BOC+∠DOB=4α,
∵∠AOD=
∠AOC,
∴∠AOD=
∠COD=
α,
∴∠AOB=∠BOD-∠AOD=3α-
α=
α=70°,
∴α=42°,
∴∠BOC=42°,
综上所述:∠BOC的度数分别是10°,14°,30°,42°.
∴∠AOD=∠AOB-∠BOD=70°-40°=30°,
∵OD是∠AOC的平分线,
∴∠AOC=2∠AOD=60°,
∴∠BOC=∠AOB-∠AOC=10°;
(2)设∠BOC=α,
∴∠BOD=3∠BOC=3α,
依据题意,分两种情况:
①当射线OC在∠AOB内部时,此时射线OD的位置只有两种可能:
i)若射线OD在∠AOC内部,如图2,
∴∠COD=∠BOD-∠BOC=2α,
∵∠AOD=
| 1 |
| 2 |
∴∠AOD=∠COD=2α,
∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,
∴α=14°,
∴∠BOC=14°;
ii)若射线OD在∠AOB外部,如图3,
∴
∵∠AOD=
| 1 |
| 2 |
∴∠AOD=
| 1 |
| 3 |
| 2 |
| 3 |
∴∠AOB=∠BOD-∠AOD=3α-
| 2 |
| 3 |
| 7 |
| 3 |
∴α=30°,
∴∠BOC=30°;
②当射线OD在∠AOB外部时,
依据题意,此时射线OC靠近射线OB,
∵∠BOC<45°,∠AOD=
| 1 |
| 2 |
∴射线OD的位置也只有两种可能:
i)若射线DO在∠AOB内部,如图4,
则∠COD=∠BOC+∠BOD=4α,
∵∠AOD=
| 1 |
| 2 |
∴∠AOD=∠COD=4α,
∴∠AOB=∠BOD+∠AOD=4α,
∴AOB=∠BOD+∠AOD=3α+4α=7α=70°,
∴α=10°,
∴∠BOC=10°
ii)若射线OD在∠AOB外部,如图5,
则∠COD=∠BOC+∠DOB=4α,
∵∠AOD=
| 1 |
| 2 |
∴∠AOD=
| 1 |
| 3 |
| 4 |
| 3 |
∴∠AOB=∠BOD-∠AOD=3α-
| 4 |
| 3 |
| 5 |
| 3 |
∴α=42°,
∴∠BOC=42°,
综上所述:∠BOC的度数分别是10°,14°,30°,42°.
点评:此题主要考查了角平分线的性质以及分类讨论思想的应用,根据已知正确分射线OD在∠AOB外部或内部得出是解题关键.
练习册系列答案
相关题目