题目内容

如图1,在同一平面内,将两个全等的等腰直角三角形ABCAFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若∆ABC固定不动,∆AFG绕点A旋转,AFAG与边BC的交点分别为DE(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.

(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.

(2)求m与n的函数关系式,直接写出自变量n的取值范围.

   (3)以∆ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BDCE=DE.

   (4)在旋转过程中,(3)中的等量关系BDCE=DE是否始终成立,若成立,请证明,若不成立,请说明理由.

 

解:(1)∆ABE∽∆DAE,  ∆ABE∽∆DCA

    ∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°

    ∴∠BAE=∠CDA

    又∠B=∠C=45°

    ∴∆ABE∽∆DCA

    (2)∵∆ABE∽∆DCA

    ∴

    由依题意可知CA=BA=

    ∴

    ∴m=

    自变量n的取值范围为1<n<2

    (3)由BD=CE可得BE=CD,即m=n

     ∵m=

∴m=n=

OB=OC=BC=1

OE=OD=-1

D(1-, 0)

BD=OBOD=1-(-1)=2-=CE, DE=BC-2BD=2-2(2-)=2-2

BDCE=2 BD=2(2-)=12-8, DE=(2-2)= 12-8

BDCE=DE

(4)成立

证明:如图,将∆ACE绕点A顺时针旋转90°至∆ABH的位置,则CE=HB,AE=AH,

ABH=∠C=45°,旋转角∠EAH=90°.

连接HD,在∆EAD和∆HAD

AE=AH, ∠HAD=∠EAH-∠FAG=45°=∠EAD, AD=AD.

∴∆EAD≌∆HAD

DH=DE

又∠HBD=∠ABH+∠ABD=90°

BD+HB=DH

BDCE=DE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网