题目内容
【题目】对于二次函数y=x2﹣2mx﹣3,有下列结论:
①它的图象与x轴有两个交点;
②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;
③如果将它的图象向左平移3个单位后过原点,则m=1;
④如果当x=2时的函数值与x=8时的函数值相等,则m=5.
其中一定正确的结论是_______.(把你认为正确结论的序号都填上)
【答案】①③④
【解析】
①利用根的判别式△>0判定即可;
②根据二次函数的增减性利用对称轴列不等式求解即可;
③根据向左平移横坐标减求出平移前的点的坐标,然后代入函数解析式计算即可求出m的值;
④根据二次函数的对称性求出对称轴,再求出m的值,然后把x=2012代入函数关系式计算即可得解.
解:①∵△=(﹣2m)2﹣4×1×(﹣3)=4m2+12>0,
∴它的图象与x轴有两个公共点,故本小题正确;
②∵当x≤﹣1时y随x的增大而减小,
∴对称轴直线x=﹣
≤﹣1,
解得m≤﹣1,故本小题错误;
③∵将它的图象向左平移3个单位后过原点,
∴平移前的图象经过点(3,0),
代入函数关系式得,32﹣2m3﹣3=0,
解得m=1,故本小题正确;
④∵当x=2时的函数值与x=8时的函数值相等,
∴对称轴为直线x=
=5,
∴﹣
=5,
解得m=5,故本小题正确;
综上所述,结论正确的是①④共2个.
故答案是:①③④.
练习册系列答案
相关题目