题目内容
已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC
画图操作:
(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)
![]()
理解应用:
(2)在(1)的条件下,
①若tan∠APB
,求点P的坐标
②当点P的坐标为 时,∠APB最大
拓展延伸:
(3)若在直线y
x+4上存在点P,使得∠APB最大,求点P的坐标
![]()
已知二次函数 y =- x 2 + bx + c 中函数 y 与自变量 x 之间的部分对应值如下表所示,点 A ( x 1 , y 1 ), B ( x 2 , y 2 )在函数的图象上,当0< x 1 <1,2< x 2 <3时, y 1 与 y 2 的大小关系正确的是( ).
x | … | 0 | 1 | 2 | 3 | … |
y | … | -1 | 2 | 3 | 2 | … |
A. y 1 ≥ y 2 B. y 1 > y 2 C. y 1 < y 2 D. y 1 ≤ y 2
重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=
x+5,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是y=-
x+
(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m2) | 50 | 52 | 54 | 56 | 58 | … |
x(年) | 1 | 2 | 3 | 4 | 5 | … |
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:
,
,
)