题目内容
分析:根据∠CDB=∠DBA,∠C=∠BDA=90°,可判定△CDB∽△DBA,利用对应边成比例,即可判断各选项.
解答:解:∵CD∥AB,
∴∠CDB=∠DBA,
又∵∠C=∠BDA=90°,
∴△CDB∽△DBA,
∴
=
=
,即
=
=
,
A、b2=ac,成立,故本选项正确;
B、b2=ac,不是b2=ce,故本选项错误;
C、be=ad,不是be=ac,故本选项错误;
D、bd=ac,不是bd=ae,故本选项错误.
故选A.
∴∠CDB=∠DBA,
又∵∠C=∠BDA=90°,
∴△CDB∽△DBA,
∴
| CD |
| DB |
| BC |
| AD |
| BD |
| AB |
| c |
| b |
| d |
| e |
| b |
| a |
A、b2=ac,成立,故本选项正确;
B、b2=ac,不是b2=ce,故本选项错误;
C、be=ad,不是be=ac,故本选项错误;
D、bd=ac,不是bd=ae,故本选项错误.
故选A.
点评:本题考查了相似三角形的判定与性质,解答本题的关键是判断△CDB∽△DBA,注意掌握相似三角形的对应边成比例.
练习册系列答案
相关题目