题目内容
已知一个等腰三角形两边分别为4和6,那么这个等腰三角形的周长为_________.
已知 a、b 为有理数,且 a>0,b<0,a+b<0,将四个数 a、b、-a、-b 按从小到大的顺序排列是_____________(用“<”连接).
在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).
(1)当﹣2<x≤3时,求y的取值范围;
(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.
如图,已知线段与相交于点,联结,为的中点,为的中点,联结.若∠A=∠D,∠OEF=∠OFE,求证:AB=DC.
如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________。
下列命题中,正确的有( )
①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;
②有一个内角等于其他两个内角和的三角形是直角三角形;
③三角形的三边分别为a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.
A. 1个 B. 2个 C. 3个 D. 4个
已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是( )
A. ﹣1<x<4 B. ﹣1<x<3 C. x<﹣1或x>4 D. x<﹣1或x>3
的算术平方根是_____.