题目内容
(3分)(2015•聊城)一元二次方程x2﹣2x=0的解是 .
如图,在等腰梯形ABCD中,AD//BC,BC=50,AB=20,∠B=60°,则AD= .
(10分)如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.
(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.
下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )
A. B. C. D.
(8分)(2015•聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.
(3分)(2015•聊城)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是( )
A.众数是80千米/时,中位数是60千米/时
B.众数是70千米/时,中位数是70千米/时
C.众数是60千米/时,中位数是60千米/时
D.众数是70千米/时,中位数是60千米/时
如图1,一条抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C,且当x=-1和x=3时,的值相等.直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时动点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为秒.
①若使△BPQ为直角三角形,请求出所有符合条件的值;
②求为何值时,四边形ACQ P的面积有最小值,最小值是多少?
(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿轴向左平移个单位长度(),将平移后的三角形与△ODM重叠部分的面积记为,求与的函数关系式.
如图,在平面直角坐标系中,A(-3,1),以点O为直角顶点作等腰直角三角形AOB,双曲线在第一象限内的图象经过点B,设直线AB的解析式为,当时,的取值范围是( ).
A. B.或
C. D.或
(10分)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).