题目内容

【题目】如图,在△ABC中,DE是边AB的垂直平分线,交ABE、交ACD,连接BD

1)若ABAC,且△BCD的周长为18cm,△ABC的周长为30cm,求BE的长;

2)若∠CBD30°,试求△ABC三个角的度数.

【答案】1BE6cm;(2)∠A40°,∠ABC70°,∠C70°.

【解析】

1)根据线段垂直平分线的性质得到AD=DBAE=BE,根据三角形的周长公式求出AB,即可得出结论;

2)根据等腰三角形的性质得到∠A=ABD,根据等腰三角形的性质、三角形内角和定理计算即可.

1)∵DE是边AB的垂直平分线,

AD=DBAE=BE

∵△BCD的周长为18cm

AC+BC=AD+DC+BC=DB+DC+BC=AC+BC=18(cm)

∵△ABC的周长为30cm

AB=30(AC+BC)=3018=12(cm)

BE=12÷2=6(cm)

2)设∠A

DA=DB

∴∠A=ABD

AB=AC

∴∠C=ABC=α+30°,

由三角形的内角和定理得:α+2(α+30°)=180°,

解得:α=40°,

∴∠A=40°,∠ABC=70°,∠C=70°.

练习册系列答案
相关题目

【题目】一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:

(1)二次函数和反比例函数的关系式.

(2)弹珠在轨道上行驶的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由图象可知前一分钟过点(1,2),后三分钟时过点(2,8),分别利用待定系数法可求得函数解析式;

(2)把t=2代入(1)中二次函数解析式即可.

详解:(1)v=at2的图象经过点(1,2),

a=2.

∴二次函数的解析式为:v=2t2,(0≤t≤2);

设反比例函数的解析式为v=

由题意知,图象经过点(2,8),

k=16,

∴反比例函数的解析式为v=(2<t≤5);

(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,

∴弹珠在轨道上行驶的最大速度在2秒末,为8/分.

点睛:本题考查了反比例函数和二次函数的应用.解题的关键是从图中得到关键性的信息:自变量的取值范围和图象所经过的点的坐标.

型】解答
束】
24

【题目】阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.

(1)在图1中证明小胖的发现;

借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:

(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;

(3)如图3,在ABC中,AB=AC,BAC=m°,点E为ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求EAF的度数(用含有m的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网