题目内容

21、如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.
分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.
解答:解:∵BE平分∠ABD,DE平分∠BDC(已知),
∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).
∵∠1+∠2=90°,
∴∠ABD+∠BDC=2(∠1+∠2)=180°.
∴AB∥CD(同旁内角互补,两直线平行).
点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网