题目内容
【题目】如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.
![]()
(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).
①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 (单位长度/秒);点B运动的速度是 (单位长度/秒).
②若点P为数轴上一点,且PA﹣PB=OP,求
的值;
(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?
【答案】(1)①2;4;②4;(2)4或8或
或
.
【解析】试题分析:(1)①把A、B两点表示在数轴上,计算出M、N两点的速度即可;
②设点P在数轴上对应的数为x,根据PA-PB=OP,分x的范围求出所求即可;
(2)设再经过m秒,可得MN=4(单位长度),分M与N同向与反向求出所求即可.
试题解析:(1)①画出数轴,如图所示:
![]()
可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);
故答案为:2,4;
②设点P在数轴上对应的数为x,
∵PA﹣PB=OP≥0,
∴x≥2,
当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;
当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,
则
或
;
(2)设再经过m秒,可得MN=4(单位长度),
若M、N运动的方向相同,要使得MN=4,必为N追击M,
∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,
解得:m=4或m=8;
若M、N运动方向相反,要使得MN=4,必为M、N相向而行,
∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,
解得:m=
或m=
,
综上,m=4或m=8或m=
或m=
.