题目内容
【题目】已知,
,
与
成正比例,
与
成反比例,并且当
时,
,当
时,
.
(
)求
关于
的函数关系式.
(
)当
时,求
的值.
【答案】(
)
;(
)
,
.
【解析】分析:(1)首先根据
与x成正比例,
与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出
和
与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令y=0,即可求出x的值.
本题解析:
(
)设
,
,
则
,
∵当
时,
,当
时,
,
∴![]()
解得,
,
∴
关于
的函数关系式为
.
(
)把
代入
得,
,
解得:
,
.
点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.
【题型】解答题
【结束】
24
【题目】如图,菱形
的对角线
、
相交于点
,过点
作
且
,连接
、
,连接
交
于点
.
(1)求证:
;
(2)若菱形
的边长为2,
.求
的长.
![]()
【答案】(1)证明见解析(2)
【解析】试题分析:(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
(1)证明:在菱形ABCD中,OC=
AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)在菱形ABCD中,∠ABC=60°,
∴AC=AB=2.
∴在矩形OCED中,
CE=OD=
.
在Rt△ACE中,
AE=
.
练习册系列答案
相关题目