题目内容
如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长是 .
多边形剪去一个角后,多边形的外角和将( )
A. 减少180º B. 不变 C. 增大180º D. 以上都有可能
如图,AD=BD,AD⊥BC,垂足为D,BF⊥AC,垂足为F,BC=8cm,DC=3cm,则AE= cm.
如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积为3时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
先化简(1-)÷,并求当x满x2-6=5x时该代数式的值.
如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是( )
A.16 B.18 C.20 D.22
在“五•一”期间,某公司组织员工外出某地旅游.甲、乙两家旅行社为了吸引更多的顾客,分别推出了赴该地旅游的团体优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按原价五折优惠;乙旅行社的优惠办法是:一律按原价6折优惠.已知这两家旅行社的原价均为a元,且在旅行过程中的各种服务质量相同.如果你是该公司的负责人,你会选择哪家旅行社.
的立方根是( )
A.-1 B.O C.1 D. ±1
如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?