题目内容

精英家教网如图CE是等边三角形ABC边AB边上的高,AB=4,DA⊥AB,DA=
3
,BD与CE、CA分别交于点F、M.
(1)求CF的长;
(2)求△ABM的面积.
分析:(1)利用三角形的中位线平行于第三边并且等于它的一半可求得EF的长,则CF的长可求;
(2)由(1)中过程可知△ADM∽△CFM,根据相似比可求出AM的长,过点M作MN⊥AB于N,在Rt△AMN中可求出高MN的长,则△ABM的面积可求解.
解答:解:(1)∵CE是等边三角形ABC边AB上的高,
∴E是AB的中点,
∵DA⊥AB,∴CE∥DA,
∵DA=
3
,∴EF=
1
2
AD=
3
2

∴AB=4,∴CE=2
3

∴CF=CE-EF=
3
3
2
精英家教网

(2)如图,过点M作MN⊥AB于点N,
∵△ADM∽△CFM,∴
AM
MC
=
AD
CF
=
2
3

AM
AC
=
2
5

∴AM=
2
5
AC=
8
5

在Rt△AMN中,
∵AM=
8
5
,∠MAB=60°,
∴MN=AM•sin60°=
4
3
5

∴S△ABM=
1
2
AB•MN=
8
3
5
点评:本题考查了三角形的中位线定理、等边三角形的性质及相似三角形的性质及判定.相似比是联系周长、面积、对应线段等的媒介,也是相似三角形计算中常用的一个比值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网