题目内容
设x=
,y=
,则x3+y3的值等于
2+
| ||
2-
|
2-
| ||
2+
|
2702
2702
.分析:根据已知条件得到x=7+4
,y=7-4
,则x+y=14,xy=49-48=1,再把x3+y3分解得到(x+y)(x2-xy+y2),然后变形得到x3+y3=(x+y)[(x+y)2-3xy],再把x+y=14,xy=1整体代入计算即可.
| 3 |
| 3 |
解答:解:∵x=
=7+4
,y=
=7-4
,
∴x+y=14,xy=49-48=1,
∴x3+y3=(x+y)(x2-xy+y2)
=(x+y)[(x+y)2-3xy]
=14×(142-3×1)
=2702.
故答案为2702.
2+
| ||
2-
|
| 3 |
2-
| ||
2+
|
| 3 |
∴x+y=14,xy=49-48=1,
∴x3+y3=(x+y)(x2-xy+y2)
=(x+y)[(x+y)2-3xy]
=14×(142-3×1)
=2702.
故答案为2702.
点评:本题考查了二次根式的化简求值:先把二次根式化为最简二次根式或整式,然后运用整体思想把满足条件的字母的值代入进行计算.
练习册系列答案
相关题目