题目内容
已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;
如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是 ____________
几何模型:
条件:如图1,A、B是直线同旁的两个定点.
问题:在直线上确定一点P,使PA+PB的值最小.
方法:作点A关于直线的对称点A′,连接A′B交于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图2,已知平面直角坐标系中两定点A(0,-1),B(2,-1),P为x轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______;
(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.由正方形对称性可知,B与D关于直线AC对称,连接BD,则PB+PE的最小值是______;
(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为 ;
(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是_______________.
如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )
A. 100×80﹣100x﹣80x=7644
B. (100﹣x)(80﹣x)+x2=7644
C. (100﹣x)(80﹣x)=7644
D. 100x+80x=356
△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△ABlCl;
(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______.
如果等腰三角形一腰上的高与另一腰的夹角为20°,那么这个等腰三角形的底角为______.
如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为( )
A. 4 B. 6 C. D. 8
若2018m=6,2018n=4,则20182m﹣n=_____.
下列说法正确的是( )
A. 是三次二项式 B. 是一次二项式
C. 是单项式 D. 的系数是-1