题目内容
如图,直线l1∥l2∥l3,若AB=3,BC=4,则的值是( )
A. B. C. D.
B.
如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )
A. 15° B. 20° C. 25° D. 30°
下列长度的三条线段能组成三角形的是( )
A. 1,2,4 B. 4,9,6 C. 5,5,11 D. 3,5,8
已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.
(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).
根据下表的对应值,试判断一元二次方程ax2+bx+c=0的一解的取值范围是( )
x 3.23 3.24 3.25 3.26
ax2+bx+c ﹣0.06 ﹣0.02 0.03 0.07
A. 3<x<3.23 B. 3.23<x<3.24 C. 3.24<x<3.25 D. 3.25<x<3.26
如图,一几何体的三视图如右:
那么这个几何体是 .
2(x﹣3)=3x(x﹣3).
如图,在Rt直角△ABC中,∠B=45°,AB=AC,点D为BC中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是( )
A. ①②④ B. ②③④ C. ①②③ D. ①②③④
如图,在平面直角坐标系xOy中,点M为抛物线y=-x2+2nx-n2+2n(n>2)的顶点,直线y=与抛物线交于点P、Q,过点P作PA∥x轴,交抛物线于另一点A,交y轴于点B.
(1)求出M的坐标(用n的代数式表示);
(2)求证:OM⊥OP;
(3)当OM=OQ时,求n的值;
(4)当△MPA的面积是△POM面积的2倍时,求tan∠OPM的值.