题目内容
如图,在△ABC中,DE∥BC,AD=3,BD=6,AE=4,则EC的长是 .
(本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA—AD—DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD—DA—AB于点E.点P,Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC?
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD,DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
已知关于的分式方程的解是非负数,则的取值范围是___.
(本题满分10分)如图①,一条笔直的公路上有A、B、C三地,B.C两地相距150千米,甲、乙两辆汽车分别从B、C两地同时出发,沿公路匀速相向而行,分别驶往C、B两地.甲、乙两车到A地的距离y1、y2(千米)与行驶时间x(时)的关系如图②所示.根据图像进行以下探究:
(1)请在图①中标出A地的位置,并作简要的文字说明;
(2)求图②中M点的坐标,并解释该点的实际意义;
(3)在图②中补全甲车的函数图像,求甲车到A地的距离y1与行驶时间x的函数表达式;
(4)A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.
(本题满分8分)
(1)计算:;
(2)解分式方程:
如果零上2℃记作+2℃,那么零下3℃记作 .
下列计算正确的是( )
A. B. C. D.
写出的一个同类二次根式 .
(本题满分10分)如图1,在平面直角坐标系中,直线的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2,
①当b= 时,直线经过圆心M ;
②当b= 时,直线与 ⊙M相切;
(2)若把⊙M换成矩形ABCD,如图2,其三个顶点的坐标分别为:A(2,0),B(6,0),C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.