题目内容
5
5
.分析:根据图形的特征得出线段之间的关系,进而利用勾股定理求出各边之间的关系,从而得出答案.
解答:解:∵图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,
∴CG=NG,CF=DG=NF,
∴S1=(CG+DG)2
=CG2+DG2+2CG•DG
=GF2+2CG•DG,
S2=GF2,
S3=(NG-NF)2=NG2+NF2-2NG•NF,
∵S1+S2+S3=15=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2,
∴S2的值是:5.
故答案为:5.
∴CG=NG,CF=DG=NF,
∴S1=(CG+DG)2
=CG2+DG2+2CG•DG
=GF2+2CG•DG,
S2=GF2,
S3=(NG-NF)2=NG2+NF2-2NG•NF,
∵S1+S2+S3=15=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2,
∴S2的值是:5.
故答案为:5.
点评:此题主要考查了勾股定理的应用,根据已知得出S1+S2+S3=15=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2是解决问题的关键.
练习册系列答案
相关题目