搜索
题目内容
已知
,
,且
A
-
B
中不含有
x
的项,求
的值。
试题答案
相关练习册答案
解:
A
-
B
=
=(2-
b
)
+(
a
+3)
x
-6
y
+7,
因为
A
-
B
中不含
x
的项,所以2-
b
=0,
a
+3=0,即
b
=2,
a
=-3,
所以
=5。
练习册系列答案
天利38套中考试题精选系列答案
归纳与测评系列答案
贵州中考系列答案
滚动迁移中考总复习系列答案
海东青中考ABC卷系列答案
好学生课时检测系列答案
好学生口算计算应用一卡通系列答案
毕业生升学文化课考试说明系列答案
各地期末卷真题汇编系列答案
毕业生学业考试说明与检测系列答案
相关题目
已知:如图,矩形ABCD中AB=4,AD=12,点P是线段AD上的一动点(点P不与点A,D重合),点Q是直线CD上的一点,且PQ⊥BP,连接BQ,设AP=x,DQ=y
(1)求证:△ABP∽△DPQ.
(2)求y与x的函数关系式,并写出自变量x的取值范围.
(3)并求出当y取何值,△ABP∽△PBQ.
(4)若点Q在DC的延长线上,则x的取值范围
.(不必写出过程).
为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,
药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.
(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
(2012•丰台区一模)已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,连接EC,取EC的中点M,连接BM和DM.
(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是
BM=DM且BM⊥DM
BM=DM且BM⊥DM
;
(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.
已知:如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F.H是BC边的中点,连接DH与BE相交于点G.
(1)求证:△ABC是等腰三角形;
(2)若过点G作GM∥BC,交DC于点M,其他条件不变,求证:DF=CM;
(3)若把题目中“BE平分∠ABC”改为“BE平分线段DC”,其他条件不变,连接HF.求证:HF=AD.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案