题目内容
要使x2+4x+m是完全平方式,那么m的值是( )
| A、4 | B、8 | C、±4 | D、16 |
考点:完全平方式
专题:
分析:先根据x2+4x+m求出第二个数,再根据完全平方式得出m=22,求出即可.
解答:解:∵x2+4x+m是一个完全平方式,
∴x2+4x+m=x2+2•x•2+22,
即m=22=4,
故选A.
∴x2+4x+m=x2+2•x•2+22,
即m=22=4,
故选A.
点评:本题考查了对完全平方式的应用,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.
练习册系列答案
相关题目
如(x+m)与(x-4)的乘积中一次项是5x,则常数项为( )
| A、9 | B、-9 | C、36 | D、-36 |
下列各式结果为正数的是( )
| A、-(-2)2 |
| B、(-2)3 |
| C、-|-2| |
| D、-(-2) |
本学期的五次数学测验中,甲、乙两位同学的平均成绩一样,甲的方差S甲2=110,乙的五次成绩分别为80、85、100、90、95,则下列说法正确的是( )
| A、甲、乙的成绩一样稳定 |
| B、甲的成绩稳定 |
| C、乙的成绩稳定 |
| D、不能确定 |
下列图形中,不是轴对称图形的是( )
| A、 |
| B、 |
| C、 |
| D、 |