题目内容
不等式组的解集在数轴上表示为
A. B.
C. D.
是( )
A. 分数 B. 有理数 C. 无理数 D. 整数
在我们的生活中,常见到很多美丽的图案,下列图案中,既是中心对称,又是轴对称图形的是( )
A. (A) B. (B) C. (C) D. (D)
解方程:.
如图,反比例函数的图象经过正方形ABCD的顶点A和中心E,若点D的坐标为,则k的值为
A. 2 B. C. D.
阅读理【解析】
我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形是 .
猜想证明:
(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2, 之间的数量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4 (m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.
如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=,则线段CE的最大值为 .
如图,抛物线y=ax2+bx﹣经过A(﹣1,0),B(5,0)两点.
(1)求此抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使得PA+PC的值最小时,求△ABP的面积;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
如图所示,台风过后某小学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部C点8米处,已知旗杆长16米,则旗杆断裂的地方距底部( )
A. 4米 B. 5米 C. 6米 D. 8米