题目内容
解下列方程组:
①
②.
已知直线y=x+6与x轴,y轴围成一个三角形,则这个三角形面积为 .
若5a+1和a﹣19是数m的平方根.求a和m的值.
下列语句:
①相等的角是对顶角;
②如果两条直线被第三条直线所截,那么同位角相等;
③过直线外一点有且只有一条直线与已知直线平行;
④平行线间的距离处处相等.
其中正确的命题是( )
A.①② B.②③ C.③④ D.①④
甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是 .
将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是( )
A.将原图向左平移两个单位 B.关于原点对称
C.将原图向右平移两个单位 D.关于y轴对称
阅读下文,寻找规律.
计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….
(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+xn)= .
(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)
(1)已知二次函数的图像如图,请根据图像直接写出该二次函数图像经过怎样的左右平移,新图像通过坐标原点?
(2)在关于二次函数图像的研究中,秦篆晔同学发现抛物线()和抛物线()关于轴对称,基于协作共享,秦同学将其发现口诀化“、不变,相反”供大家分享,而在旁边补笔记的胡庄韵同学听成了“、相反,不变”,并按此法误写,然而按此误写的抛物线恰巧与原抛物线也对称,请你写出小胡同学所写的与原抛物线的对称图形的解析式,并研究其与原抛物线的具体对称情况;
(3)抛物线与轴从左到右交于、两点,与轴交于点,是其对称轴上一点,点在轴上,当点满足怎样的条件,以点、、为顶点的三角形与△有可能相似,请写出所有满足条件的点的坐标;
(4)、为抛物线上两点,且、关于对称,请直接写出、两点的坐标;