题目内容
如图,l1∥l2∥l3,BC=3, =2,则AB=___.
如图.在△ABC中,∠ABC=90°,∠BAC=30°,AC=2,将△ABC绕点A逆时针旋转至△AB1C1,使AC1⊥AB,则BC扫过的面积为( )
A. B. C. D.
某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光明且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:
(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=15时,大棚内的温度约为多少度?
某种细胞的平均直径是0.00000085米,将0.00000085用科学记数法表示为( )
A. 8.5×10﹣7 B. 0.85×10﹣7 C. 8.5×10﹣6 D. 85×10﹣6
如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.
(1)求证:AB与⊙O相切;
(2)①当∠OEB=_____时,四边形OCBE为矩形;
②在①的条件下,若AB=4,则OA=_____时,四边形OCBE为正方形?
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若AC=8,BD=10,AB=6,则△OAB的周长为( )
A.12 B.13 C.15 D.16
在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q
①若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
②取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
若m﹣n=﹣1,则(m﹣n)2﹣2m+2n=_____.
菏泽市每年5月份举行九年级理化生实验操作考试,小明最擅长的是生物,其次是化学.如果规定每位学生随机抽取其中两科实验进行考试,那么
(1)小明能参加生物实验考试的概率是多少;
(2)用列表或画树状图的方法求小明恰好能参加生物和化学两科的实验考试的概率.