题目内容

乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是(    )(写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是(    ),长是(    ),面积是(    ) (写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式(    );
(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).
解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2
(2)a﹣b,a+b,(a+b)(a﹣b);
(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);
(4)①解:原式=(10+0.2)×(10﹣0.2),=102﹣0.22,=100﹣0.04,=99.96;
②解:原式=[2m+(n﹣p)][2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网