题目内容
已知下面一列等式:1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 5 |
(1)请你按这些等式左边的结构特征写出它的一般性等式:
(2)验证一下你写出的等式是否成立;
(3)利用等式计算:
| 1 |
| x(x+1) |
| 1 |
| (x+1)(x+2) |
| 1 |
| (x+2)(x+3) |
| 1 |
| (x+3)(x+4) |
分析:(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算.(3)根据前两部结论进行计算.
解答:解:(1)由1×
=1-
;
×
=
-
;
×
=
-
;
×
=
-
;….可知它的一般性等式为
=
-
;
(2)∵
-
=
-
=
=
•
,
∴原式成立;
(3)
+
+
+
=
-
+
-
+
-
+
-
=
-
=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
(2)∵
| 1 |
| n |
| 1 |
| n+1 |
| n+1 |
| n(n+1) |
| n |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴原式成立;
(3)
| 1 |
| x(x+1) |
| 1 |
| (x+1)(x+2) |
| 1 |
| (x+2)(x+3) |
| 1 |
| (x+3)(x+4) |
=
| 1 |
| x |
| 1 |
| x+1 |
| 1 |
| x+1 |
| 1 |
| x+2 |
| 1 |
| x+2 |
| 1 |
| x+3 |
| 1 |
| x+3 |
| 1 |
| x+4 |
=
| 1 |
| x |
| 1 |
| x+4 |
=
| 4 |
| x2+4x |
点评:解答此题关键是找出规律,再根据规律进行逆向运算.
练习册系列答案
相关题目