题目内容
如图所示的几何体的俯视图是
![]()
A.
B.
C.
D. ![]()
下列运算正确的是![]()
A.
B.
C.
D. ![]()
陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学的路程与所用时间的关系示意图.根据图中提供的信息回答下列问题:
(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?
(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?
(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?
(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?
![]()
如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.
![]()
如图,潜望镜中的两个镜片AB和CD是平行的,光线经过镜子反射时,∠AEN=∠BEF,∠EFD=∠CFM,那么进入潜望镜的光线NE和离开潜望镜的光线FM是平行的吗?说明理由.
![]()
如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x的变化,y的值也随之变化.
(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?
![]()
(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y |
(3)当x为何值时,y的值最大?
查看答案 试题属性- 题型:单选题
- 难度:简单
下列命题中的真命题是( )
A. 全等的两个图形是中心对称图形
B. 关于中心对称的两个图形全等
C. 中心对称图形都是轴对称图形
D. 轴对称图形都是中心对称图形
B 【解析】试题解析:中心对称的两个图形全等,但全等的两个图形不一定中心对称,所以A的说法错误,B的说法正确;中心对称图形与轴对称图形是两个不同的概念,没有必然的联系,所以C、D错误. 故选B.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( )
![]()
A.
B.
C.
D.![]()
已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=
+x.其中,二次函数的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案杭州市从
年
月
日开始实行阶梯电价制,居民上生活用电价格方案如下:(本题不考虑峰谷电)
档次 | 全年的用电量 | 电价(单位:元/度) |
第一档 |
|
|
第二档 |
|
|
第三档 |
|
|
(
)小王家
年全年的用电量是
度,请计算小王家这年的电费付了多少元?
(
)小李家
年
月份这个月的用电量是
度,小李算出它们家的电费是
元,而供电局却收了小李家的电费
元,你知道其中的奥秘吗?请你来解释下.
(
)小张家
年全年用电量为
度,请用含
的代数式表示小张家全年应交的总电费,并把结果化简.
化简与求值:
(
)已知当
时,代数式
值为
,求代数式
的值.
(
)已知
,代数式
的值.
(
)若多项式
是关于
,
的四次二项式,求代数式
的值.
如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长.
(2)图中阴影部分是一个正方形
,求出阴影部分的面积及其边长.
(3)把正方形
放到数轴上,如图
,使得
与
重合,点
与
重合,点
与点
关于
点对称,那么
在数轴上表示的数为__________;点
在数轴上表示的数为__________.
![]()
![]()
- 题型:单选题
- 难度:中等
如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
![]()
A. 2 B. 2.5或3.5 C. 3.5或4.5 D. 2或3.5或4.5
D 【解析】试题分析:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发, ∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4...如图,在△ABC中, 若DE∥BC ,
,DE=4cm,则BC的长为 ( )
![]()
A. 8cm B. 12cm C. 11cm D. 10cm
查看答案如图,下列各式能使ΔACB∽ΔDCA的是( )
![]()
A.
B.
C.
D. ![]()
在同一平面直角坐标系中,一次函数
)和二次函数
)的图象可能为( )
![]()
A. A B. B C. C D. D
查看答案抛物线
的图象开口最大的是( )
A.
B.
C.
D. 无法确定
对于函数
,下列说法错误的是( )
A. 它的图象在第一、三象限
B. 它的图象既是轴对称图形又是中心对称图形
C. 当
>0时,
的值随
的增大而增大
D. 当
<0时,
的值随
的增大而减小
- 题型:单选题
- 难度:中等
在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:
M号衬衫数 | 0 | 1 | 4 | 5 | 7 | 9 | 10 | 11 |
包数 | 7 | 3 | 10 | 15 | 5 | 4 | 3 | 3 |
根据以上数据,选择正确选项( ).
A. M号衬衫一共有47件
B. 从中随机取一包,包中L号衬衫数不低于9是随机事件
C. 从中随机取一包,包中L号衬衫数不超过4的概率为0.26
D. 将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.252
D 【解析】试题分析:A.根据表中是数据求得M号衬衫的数量为1×3+4×10+5×15+7×5+9×4+10×3+11×3=252件,故A选项错误;B.由题可得,50包中L号衬衫数全部不低于9,所以从中随机取一包,包中L号衬衫数不低于9的概率为1,是必然事件,故B选项错误;C.由题可得,50包中没有一包中L号衬衫数不超过4,所以从中随机取一包,包中L号衬衫数不超过4的概率为0,故C选项错误;...如图,菱形ABCD的周长为
,垂足为
,则下列结论正确的有
;
;
菱形面积为
;
.
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入
亿元
若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
如图所示,直线y
x
b与y
kx
相交于点P,点P的横坐标为
,则关于x的不 等式x
b
kx
的解集在数轴上表示正确的是
![]()
![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果
,那么
=( )
![]()
A.
B.
C.
D. ![]()
如图所示的几何体的俯视图是
![]()
A.
B.
C.
D. ![]()
- 题型:单选题
- 难度:简单
如图所示,用长为20的铁丝焊接成一个长方形,设长方形的一边为x,面积为y,随着x的变化,y的值也随之变化.
(1)写出y与x之间的关系式,并指出在这个变化中,哪个是自变量?哪个是因变量?
![]()
(2)用表格表示当x从1变化到9时(每次增加1),y的相应值;
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y |
(3)当x为何值时,y的值最大?
(1)y=10x-x2,x是自变量,y是因变量;(2)填表见解析;(3)当x为5时,y的值最大. 【解析】试题分析:(1)根据周长的等量关系可得长方形的另一边为10-x,那么面积=x(10-x),自变量是x,因变量是函数值y; (2)把相关x的值代入(1)中的函数解析式求值即可; (3)根据(2)所得的结论可得x为何值时,y的值最大. 试题解析: 【解析】 (1)由...如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.
(1)图中∠AOC的对顶角为________,∠BOE的补角为________;
(2)若∠AOC=75°,且∠BOE∶∠EOD=1∶4,求∠AOE的度数.
![]()
如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,中间将修建一座边长为(a+b)米的正方形雕像,规划部门计划将余下部分进行绿化.
(1)试用含a,b的式子表示绿化部分的面积(结果要化简);
(2)若a=3,b=2,请求出绿化部分的面积.
![]()
计算:
(1)5x(2x2-3x+4);
(2)20172-2018×2016;
(3)
;
(4)(a+b)(a-b)+(a+b)2-2a2.
查看答案如图,已知AB∥DE,∠ABC=75°,∠CDE=150°,则∠BCD的度数为____.
![]()
如图,直线AB与直线CD交于点O,OE⊥AB,∠DOF=90°,OB平分∠DOG,有下列结论:①当∠AOF=60°时,∠DOE=60°;②OD为∠EOG的平分线;③与∠BOD相等的角有三个;④∠COG=∠AOB-2∠EOF.其中正确的结论是________(填序号).
![]()
- 题型:解答题
- 难度:中等
如图反映的过程是:小刚从家去菜地浇水,又去青稞地锄草,然后回家.已知菜地与青稞地的距离为a千米,小刚在青稞地锄草比在菜地浇水多用了b分钟,则a,b的值分别为__________.
![]()
调皮的弟弟把玲玲的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于______________.
![]()
已知am=4,an=3,则a2m+n= .
查看答案如图,已知直线a∥b,若∠1=40°50′,则∠2的度数为________.
![]()
小华用500元去购买单价为3元的一种商品,剩余的钱数y(元)与购买这种商品的件数x(件)之间的关系是__________.
查看答案甲、乙两车分别从相距200km的A,B两地同时出发,它们离A地的距离s(km)随时间t(h)变化的图象如图所示,则下列结论不正确的是( )
![]()
A. 甲车的平均速度为40km/h
B. 乙车行驶3h到达A地,稍作停留后返回B地
C. 经
h后,两车在途中相遇
D. 乙车返回B地的平均速度比去A地的平均速度小
查看答案 试题属性- 题型:填空题
- 难度:中等
10袋大米的称重记录如下表所表示(单位:kg),求10袋大米的总质量.
每袋大米的质量(kg) | 47 | 50 | 46 | 51 |
袋数 | 3 | 2 | 1 | 4 |
小明的计算过程:10袋大米的总质量为47×3+50×2+46×1+51×4=······
(1)请你将小明的计算过程补充完整;
(2)若每袋大米的标准质量是50kg,请运用正负数的相关知识求这10袋大米的总质量;
(3)结合(2)中的计算说明,与10袋标准质量的大米相比,这10袋大米总计超过多少千克或不足多少千克?
(1)见解析;(2)10袋大米的总质量是491kg;(3)比10袋标准质量的大米少9kg. 【解析】试题分析: (1)根据题中条件进行有理数的加减运算. (2)选择一个数作为基准,从而利用正负数表示一些数.本题中的基准数是50,这样就很容易用正负数记录10袋大米的质量, 然后用标准的10袋大米的总质量加上超出(或不足)的重量即可得到实际这10袋大米的总质量. (3)在(2)中的数...如图所示,在一个边长为a的正方形空地的四角上修建等腰直角三角形花坛,其直角边长均为b(2b<a),其余部分都种上草。
(1)请用含a,b的代数式表示草地部分的面积;
(2)若a=8m,b=3m,求该草地部分的面积.
![]()
阅读材料:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b。运用此方法可进行有理数的大小比较,如比较5与3的大小。因为5-3=2>0,所以5>3,我们把这种比较大小的方法叫作“求差法”。
(1)请用“求差法”比较大小:
与
;
(2)请运用不同于(1)的方法比较
与
的大小.
先简化、后求值:
,其中x=-2,y=-1.
(1)用代数式表示:a的3倍与b的差的一半;
(2)结合实际,说出代数式2a+3b的意义.
查看答案解方程: ![]()
- 题型:解答题
- 难度:中等
若x2﹣kxy+9y2是一个完全平方式,则k的值为( )
A. 3 B. ±6 C. 6 D. +3
B 【解析】∵x2?kxy+9y2是完全平方式, ∴?kxy=±2×3y?x, 解得k=±6. 故选:B.下列运算正确的是( )
A. 3x2+2x3=5x5 B. (π﹣3.14)0=0 C. 3﹣2=﹣6 D. (x3)2=x6
查看答案已知x≠1,(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4.
(1)根据以上式子计算:
①(1-2)×(1+2+22+23+24+25);
②2+22+23+…+2n(n为正整数);
③(x-1)(x99+x98+x97+…+x2+x+1).
(2)通过以上计算,请你进行下面的探索:
①(a-b)(a+b)=____________;
②(a-b)(a2+ab+b2)=____________;
③(a-b)(a3+a2b+ab2+b3)=____________.
查看答案一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元。
(1)甲、乙公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司施工费较少?
查看答案如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
![]()
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
查看答案△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.
![]()
(1)作出△ABC关于y轴对称的△A1B1C1;
(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;
(3)求出△ABC的面积.
查看答案 试题属性- 题型:单选题
- 难度:中等