题目内容
若代数式的值为3,则代数式的值为( ).
A. 24 B. 12 C. -12 D. -24
已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像;观察图像,当时,x的取值范围是 ;
(3)平移一次函数的图像后经过点(-3,1),求平移后的函数表达式.
如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是( )
A. AQ= PQ B. AQ=3PQ C. AQ= PQ D. AQ=4PQ
如图:四边形中,分别取, 的延长线上一点和,连接,分别交, 于点和,若∠1=∠2,∠3=∠4.
求证:∠=∠
从﹣3,﹣1, ,2,3,5这六个数中,随机抽取一个数,记为a,若数a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,那么这6个数中所有满足条件的a的值之积是( ).
A. 7 B. 6 C. 10 D. -10
下列航空公司的标志中,是轴对称图形的是( )
A. B. C. D.
为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:
口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)这个游戏是否公平?请说明理由.
阅读与理【解析】
图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.
操作与证明:
(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α,连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
猜想与发现:
(3)根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?
已知双曲线与直线相交于点,则_______.