题目内容

在一次课外实践活动中,同学们要知道校园内A、B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=60°,请计算A、B两处之间的距离.
分析:过点C作CD⊥AB于点D,由锐角三角函数的定义可求出AD即CD的长,在Rt△BCD中利用勾股定理可求出BD的长,再根据AB=AD+BD即可得出结论.
解答:解:过点C作CD⊥AB于点D,
∵AC=6m,∠CAB=60°,
∴CD=AC•sin60°=6×
3
2
=3
3
,AD=AC•cos60°=6×
1
2
=3,
在Rt△BCD中,
BD=
BC2-CD2
=
142-(3
3
)
2
=13m,
∴AB=AD+BD=3+13=16(m).
答:A、B两处之间的距离为16米.
点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网