题目内容
分解因式:= .
已知∠α=35°,那么∠α的余角等于( )
A、35° B、55° C、65° D、145°
分解因式:2a2﹣4a+2= .
2015“两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为 ;方案二中,当0≤x≤100时,y与x的函数关系式为 ,当x>100时,y与x的函数关系式为 ;
(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?
如图,点A在反比例函数的图像上,点B在反比例函数的图像上,且∠AOB=90°,则tan∠OAB的值为 .
如图,△ABC是等边三角形,AC=6,以点A为圆心,AB长为半径画弧DE,若∠1=∠2,则弧DE的长为
A.1 B.1.5 C.2 D.3
为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升.某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y1(百元)与销售数量x(箱)的关系为,在乡镇销售平均每箱的利润y2(百元)与销售数量t(箱)的关系为.
(1)t与x的关系是 ;将y2转换为以x为自变量的函数,则y2= ;
(2)设春节期间售完冷冻鸡肉获得总利润W(百元),当在城市销售量x(箱)的范围是0<x≤20时,求W与x的关系式;(总利润=在城市销售利润+在乡镇销售利润)
(3)经测算,在20<x≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.
点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为( )
A、 B、 C、 D、
用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:
则第10个图案中有白色地面砖 块.