ÌâÄ¿ÄÚÈÝ
£¨2010•±õºþÇøÒ»Ä££©Èçͼ£¬Å×ÎïÏßy=£¨1£©ÇóÕâÌõÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©ÉèÌâÖеÄÅ×ÎïÏßÓëÖ±ÏßµÄÁíÒ»½»µãΪC£¬ÒÑÖªPΪÏß¶ÎACÉÏÒ»µã£¨²»º¬¶Ëµã£©£¬¹ýµãP×÷PQ¡ÍxÖᣬ½»Å×ÎïÏßÓÚµãQ£¬ÊÔÖ¤Ã÷£ºµ±PΪACµÄÖеãʱ£¬Ïß¶ÎPQµÄ³¤È¡µÃ×î´óÖµ£¬²¢Çó³öPQµÄ×î´óÖµ£»
£¨3£©ÉèD¡¢EΪֱÏßACÉϵÄÁ½µã£¨²»ÓëA¡¢CÖØºÏ£©£¬ÇÒDÔÚEµÄ×ó²à£¬DE=2
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÓÚµãMºÍÅ×ÎïÏß¶¥µã¹ØÓÚxÖá¶Ô³Æ£¬¼´¿ÉµÃµ½µãNµÄ×ø±ê£¬½ø¶ø±íʾ³ö¸ÃÅ×ÎïÏߵĶ¥µã×ø±êʽº¯Êý½âÎöʽ£®
£¨2£©¸ù¾Ý£¨1£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬¿ÉµÃµ½µãAµÄ×ø±ê£¬½ø¶ø¿ÉÇó³öÖ±ÏßACµÄ½âÎöʽ£¬Éè³öµãPµÄºá×ø±ê£¬¸ù¾ÝÖ±ÏßACºÍÅ×ÎïÏߵĽâÎöʽ£¬¼´¿ÉµÃµ½P¡¢QµÄ×Ý×ø±ê£¬´Ó¶øµÃµ½¹ØÓÚPQµÄ³¤ºÍPµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉÇó³öPQµÄ×î´óÖµ¼°¶ÔÓ¦µÄPµã×ø±ê£¬È»ºóÅжϴËʱµÄPµãÊÇ·ñΪACµÄÖе㼴¿É£®
£¨3£©ÓÉÖ±ÏßACµÄбÂʿɵáÏCAB=45°£¬Òò´ËD¡¢EµÄºá×ø±ê²îΪ2£¬¿ÉÉè³öµãDµÄºá×ø±ê£¬¼´¿ÉµÃµ½µãEµÄºá×ø±ê£¬½ø¶ø¿É²ÎÕÕ£¨2£©µÄ·½·¨ÇóµÃDF¡¢EGµÄ³¤£¬ÈôÒÔD¡¢E¡¢F¡¢GΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÄÇô±ØÐëÂú×ãDE=FG£¬ÓÉ´Ë¿ÉÇóµÃµãDµÄ×ø±ê£®ÐèҪעÒâµÄÊÇ£ºÔÚ±íʾDE¡¢FGµÄ³¤Ê±£¬Òª·ÖÈýÖÖÇé¿ö¿¼ÂÇ£º
¢ÙµãDÔÚÏß¶ÎCAµÄÑÓ³¤ÏßÉÏ£¬EÔÚÏß¶ÎACÉÏ£¬¢ÚD¡¢E¶¼ÔÚÏß¶ÎACÉÏ£¬¢ÛµãEÔÚÏß¶ÎACµÄÑÓ³¤ÏßÉÏ£¬DÔÚÏß¶ÎACÉÏ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖª£¬Å×ÎïÏß¶¥µãNµÄ×ø±êΪ£¨1£¬-2£©£¬£¨1·Ö£©
¡àÆäº¯Êý¹ØÏµÊ½Îªy=
£¨x-1£©2-2=
x2-x-
£®£¨3·Ö£©
£¨2£©ÓÉ
x2-x-
=0
µÃx=-1»ò3£¬¼´A£¨-1£¬0£©¡¢B£¨3£¬0£©£»
ÓÉA£¨-1£¬0£©¡¢M£¨1£¬2£©¿ÉµÃÖ±ÏßACµÄº¯Êý¹ØÏµÊ½Îªy=x+1£¬£¨4·Ö£©
ÉèP£¨t£¬t+1£©£¬ÔòQµÄ×ø±êΪ£¨t£¬
t2-t-
£©£»£¨5·Ö£©
¡àPQ=£¨t+1£©-£¨
t2-t-
£©=-
t2+2t+
=-
£¨t-2£©2+
£¬£¨6·Ö£©
¡ßa=-
£¼0
¡àµ±t=2ʱ£¬PQÓÐ×î´óֵΪ
£¬
¼´PµãÔ˶¯ÖÁACµÄÖеãʱ£¬PQ³¤ÓÐ×î´óֵΪ
£®£¨7·Ö£©
£¨3£©ÓÉÖ±ÏßACµÄº¯Êý¹ØÏµÊ½Îªy=x+1¿ÉÖª£º¡ÏCAB=45°£¬ÔòD¡¢EµÄºá×ø±ê²îΪ2£»
ÉèµãD£¨x£¬x+1£©£¬E£¨x+2£¬x+3£©£¬Ôò£ºF£¨x£¬
x2-x-
£©£¬G£¨x+2£¬
x2+x-
£©£»
ÓÉÓÚDF¡ÎEG£¬ÈôÒÔD¡¢E¡¢F¡¢GΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÔòDF=EG£»
¢Ùµ±µãDÔÚÏß¶ÎCAµÄÑÓ³¤ÏßÉÏ£¬µãEÔÚÏß¶ÎACÉÏʱ£»
DF=
x2-x-
-£¨x+1£©=
x2-2x-
£¬EG=x+3-£¨
x2+x-
£©=-
x2+
£»
ÓÉÓÚDF=EG£¬Ôò
x2-2x-
=-
x2+
£¬
½âµÃx=1±2
£»
ÓÉÓÚx£¼0£¬ÔòD£¨1-2
£¬2-2
£©£»
¢Úµ±µãD¡¢E¶¼ÔÚÏß¶ÎACÉÏʱ£»
DF=-
x2+2x+
£¬EG=-
x2+
£»
ͬ¢Ù¿ÉµÃ£º-
x2+2x+
=-
x2+
£¬
½âµÃx=1£»
¹ÊD£¨1£¬2£©£»
¢Ûµ±µãDÔÚÏß¶ÎACÉÏ£¬EµãÔÚÏß¶ÎACµÄÑÓ³¤ÏßÉÏʱ£¬
DF=
x2-x-
-£¨x+1£©=
x2-2x-
£¬EG=x+3-£¨
x2+x-
£©=-
x2+
£»
ÓÉÓÚDF=EG£¬Ôò
x2-2x-
=-
x2+
£¬
½âµÃx=1±2
£»
ÓÉÓÚx£¾0£¬ÔòD£¨1+2
£¬2+2
£©£»
·ûºÏÌõ¼þµÄµã¹²ÓÐ3¸ö£¬·Ö±ðΪD1£¨1£¬2£©£¬D2£¨1-2
£¬2-2
£©£¬D3£¨1+2
£¬2+2
£©£®£¨11·Ö£©
£¨µÚ£¨3£©Ð¡ÌâµÃ³ö1½âµÃ£¨2·Ö£©£¬2½âµÃ£¨3·Ö£©£¬3½âµÃ4·Ö£©
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢º¯ÊýͼÏó½»µã×ø±êµÄÇ󷨡¢¶þ´Îº¯Êý×îÖµµÄÓ¦Óá¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬Í¬Ê±¿¼ÂÇÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÄѶȽϴó£®
£¨2£©¸ù¾Ý£¨1£©ËùµÃÅ×ÎïÏߵĽâÎöʽ£¬¿ÉµÃµ½µãAµÄ×ø±ê£¬½ø¶ø¿ÉÇó³öÖ±ÏßACµÄ½âÎöʽ£¬Éè³öµãPµÄºá×ø±ê£¬¸ù¾ÝÖ±ÏßACºÍÅ×ÎïÏߵĽâÎöʽ£¬¼´¿ÉµÃµ½P¡¢QµÄ×Ý×ø±ê£¬´Ó¶øµÃµ½¹ØÓÚPQµÄ³¤ºÍPµãºá×ø±êµÄº¯Êý¹ØÏµÊ½£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖʼ´¿ÉÇó³öPQµÄ×î´óÖµ¼°¶ÔÓ¦µÄPµã×ø±ê£¬È»ºóÅжϴËʱµÄPµãÊÇ·ñΪACµÄÖе㼴¿É£®
£¨3£©ÓÉÖ±ÏßACµÄбÂʿɵáÏCAB=45°£¬Òò´ËD¡¢EµÄºá×ø±ê²îΪ2£¬¿ÉÉè³öµãDµÄºá×ø±ê£¬¼´¿ÉµÃµ½µãEµÄºá×ø±ê£¬½ø¶ø¿É²ÎÕÕ£¨2£©µÄ·½·¨ÇóµÃDF¡¢EGµÄ³¤£¬ÈôÒÔD¡¢E¡¢F¡¢GΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÄÇô±ØÐëÂú×ãDE=FG£¬ÓÉ´Ë¿ÉÇóµÃµãDµÄ×ø±ê£®ÐèҪעÒâµÄÊÇ£ºÔÚ±íʾDE¡¢FGµÄ³¤Ê±£¬Òª·ÖÈýÖÖÇé¿ö¿¼ÂÇ£º
¢ÙµãDÔÚÏß¶ÎCAµÄÑÓ³¤ÏßÉÏ£¬EÔÚÏß¶ÎACÉÏ£¬¢ÚD¡¢E¶¼ÔÚÏß¶ÎACÉÏ£¬¢ÛµãEÔÚÏß¶ÎACµÄÑÓ³¤ÏßÉÏ£¬DÔÚÏß¶ÎACÉÏ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖª£¬Å×ÎïÏß¶¥µãNµÄ×ø±êΪ£¨1£¬-2£©£¬£¨1·Ö£©
¡àÆäº¯Êý¹ØÏµÊ½Îªy=
£¨2£©ÓÉ
µÃx=-1»ò3£¬¼´A£¨-1£¬0£©¡¢B£¨3£¬0£©£»
ÓÉA£¨-1£¬0£©¡¢M£¨1£¬2£©¿ÉµÃÖ±ÏßACµÄº¯Êý¹ØÏµÊ½Îªy=x+1£¬£¨4·Ö£©
ÉèP£¨t£¬t+1£©£¬ÔòQµÄ×ø±êΪ£¨t£¬
¡àPQ=£¨t+1£©-£¨
¡ßa=-
¡àµ±t=2ʱ£¬PQÓÐ×î´óֵΪ
¼´PµãÔ˶¯ÖÁACµÄÖеãʱ£¬PQ³¤ÓÐ×î´óֵΪ
£¨3£©ÓÉÖ±ÏßACµÄº¯Êý¹ØÏµÊ½Îªy=x+1¿ÉÖª£º¡ÏCAB=45°£¬ÔòD¡¢EµÄºá×ø±ê²îΪ2£»
ÉèµãD£¨x£¬x+1£©£¬E£¨x+2£¬x+3£©£¬Ôò£ºF£¨x£¬
ÓÉÓÚDF¡ÎEG£¬ÈôÒÔD¡¢E¡¢F¡¢GΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬ÔòDF=EG£»
¢Ùµ±µãDÔÚÏß¶ÎCAµÄÑÓ³¤ÏßÉÏ£¬µãEÔÚÏß¶ÎACÉÏʱ£»
DF=
ÓÉÓÚDF=EG£¬Ôò
½âµÃx=1±2
ÓÉÓÚx£¼0£¬ÔòD£¨1-2
¢Úµ±µãD¡¢E¶¼ÔÚÏß¶ÎACÉÏʱ£»
DF=-
ͬ¢Ù¿ÉµÃ£º-
½âµÃx=1£»
¹ÊD£¨1£¬2£©£»
¢Ûµ±µãDÔÚÏß¶ÎACÉÏ£¬EµãÔÚÏß¶ÎACµÄÑÓ³¤ÏßÉÏʱ£¬
DF=
ÓÉÓÚDF=EG£¬Ôò
½âµÃx=1±2
ÓÉÓÚx£¾0£¬ÔòD£¨1+2
·ûºÏÌõ¼þµÄµã¹²ÓÐ3¸ö£¬·Ö±ðΪD1£¨1£¬2£©£¬D2£¨1-2
£¨µÚ£¨3£©Ð¡ÌâµÃ³ö1½âµÃ£¨2·Ö£©£¬2½âµÃ£¨3·Ö£©£¬3½âµÃ4·Ö£©
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢º¯ÊýͼÏó½»µã×ø±êµÄÇ󷨡¢¶þ´Îº¯Êý×îÖµµÄÓ¦Óá¢Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬Í¬Ê±¿¼ÂÇÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿