题目内容
把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是 .
m>1 .
【考点】一次函数图象与几何变换.
【分析】直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
【解答】解:方法一:
直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,
联立两直线解析式得:![]()
,
解得:![]()
,
即交点坐标为(![]()
,![]()
),
∵交点在第一象限,
∴![]()
,
解得:m>1.
故答案为:m>1.
方法二:如图所示:
把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,
则m的取值范围是m>1.
故答案为:m>1.
![]()
![]()
【点评】本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.
练习册系列答案
相关题目
为了估计某市空气质量情况,某同学在30天里做了如下记录:
| 污染指数(w) | 40 | 60 | 80 | 100 | 120 | 140 |
| 天数(天) | 3 | 5 | 10 | 6 | 5 | 1 |
其中w<50时空气质量为优,50≤w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为 天.