题目内容
(2012•随州模拟)(1)解分式方程:
+
=3.
(2)先化简,再求值:
÷(x+1+
),其中x=
-1.
| x-1 |
| x-2 |
| 1 |
| 2-x |
(2)先化简,再求值:
| x2+2x |
| x2-1 |
| 2x+1 |
| x-1 |
| 2 |
分析:(1)观察可得最简公分母是(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
(2)首先将原分式化简,然后将x=
-1代入求解即可求得答案.
(2)首先将原分式化简,然后将x=
| 2 |
解答:解:(1)方程的两边同乘(x-2),得:x-1-1=3(x-2),
解得:x=2.
检验:把x=2代入(x-2)=0,即x=2不是原分式方程的解,
故原分式方程无解;
(2)原式=
÷
=
÷
=
÷
=
•
=
.
当x=
-1时,原式=
=
.
解得:x=2.
检验:把x=2代入(x-2)=0,即x=2不是原分式方程的解,
故原分式方程无解;
(2)原式=
| x(x+2) |
| (x+1)(x-1) |
| (x+1)(x-1)+2x+1 |
| x-1 |
=
| x(x+2) |
| (x+1)(x-1) |
| x2-1+2x+1 |
| x-1 |
=
| x(x+2) |
| (x+1)(x-1) |
| x(x+2) |
| x-1 |
=
| x(x+2) |
| (x+1)(x-1) |
| x-1 |
| x(x+2) |
=
| 1 |
| x+1 |
当x=
| 2 |
| 1 | ||
|
| ||
| 2 |
点评:此题考查了分式方程的求解方法与分式的化简求值问题.此题难度不大,注意掌握转化思想的应用,注意分式方程需检验.
练习册系列答案
相关题目