题目内容
计算题:
(1)(4
-4
+3
)÷2
;
(2)(-2)2-(
)-1×
+(1-
)0;
(3)先化简,再求值:(
-
)÷
,其中 x=
+1,y=
-1.
(1)(4
| 6 |
|
| 8 |
| 2 |
(2)(-2)2-(
| 2 |
| 8 |
| 3 |
(3)先化简,再求值:(
| 1 |
| x-y |
| 1 |
| x+y |
| xy2 |
| x2-y2 |
| 2 |
| 2 |
分析:(1)首先把除法转化为乘法,再化简每一项二次根式,然后再按照乘法分配原则进行乘法运算,再合并同类二次根式即可,(2)首先对负整数指数幂和零指数幂进行运算,然后进行乘法运算,最后进行加减混合运算即可,(3)首先把除法转化为乘法,按照乘法分配原则进行乘法运算后,再代入x,y的值进行计算,同时化简二次根式.
解答:解:(1)原式=(4
-2
+6
)×
=2
+2;
(2)原式=4-
×2
+1
=4-2+1
=3,
(3)∵x=
+1,y=
-1,
∴原式=(
-
)×
=
-
=
=
=2.
| 6 |
| 2 |
| 2 |
| ||
| 4 |
| 3 |
(2)原式=4-
| ||
| 2 |
| 2 |
=4-2+1
=3,
(3)∵x=
| 2 |
| 2 |
∴原式=(
| 1 |
| x-y |
| 1 |
| x+y |
| (x+y)(x-y) |
| xy2 |
=
| x+y |
| xy2 |
| x-y |
| xy2 |
=
| 2 |
| xy |
=
| 2 | ||||
(
|
=2.
点评:本题主要考查二次根式的化简求值,二次根式的化简,关键在于正确的对二次根式进行化简,认真的进行计算.
练习册系列答案
相关题目