题目内容
如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物
线=ax2+bx+c(a≠0)经过C、D、B三点.注:抛物线的顶点坐标为
(-
,
)
(1)求抛物线的解析式;
(2)若抛物线的顶点为P,△PAB的面积;
(3)在抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.
则可设抛物线的解析式y=ax2+bx+4,
依题意
∴
∴y=-
答:抛物线的解析式是y=-
(2)由(1)得P(1,
连接PA、PB过点P作PE⊥Y轴于点E
则S△PAB=S四边形PEOB-S△PEA-S△AOB=6,
答:△PAB的面积是6.
(3)设存在点M,其坐标为M(x,y),则
∴y=±2,
当y=2时,-
当y=-2时,-
∴存在点M,使△MBC的面积等于△PAB的面积,其坐标为:
M1(1+
答:在抛物线上存在点M,使△MBC的面积等于△PAB的面积,点M的坐标是
M1(1+
分析:(1)由题意C(-2,0),D(0,4),设抛物线的解析式y=ax2+bx+4,代入得到方程组
(2)由(1)得P(1,
(3)设存在点M,其坐标为M(x,y),则
点评:本题主要考查对解一元二次方程,解二元一次方程组,三角形的面积,用待定系数法求二次函数的解析式等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.
练习册系列答案
相关题目