题目内容

有一块田地的形状和尺寸如图所示,则它的面积为  

考点:

勾股定理的应用..

专题:

应用题.

分析:

连接AB,则在直角△ABC中,已知AC,BC可以求AB,根据AB,BD,AD可以判定△ABD为直角三角形,且四边形ABCD的面积S=S△ABD﹣S△ABC.所以求直角△ABC和直角△ABD的面积即可.

解答:

解:连接AB,

在直角△ABC中,AC=4,BC=3,

则AB==5,

又∵AB2+BD2=25+144=169=AD2

∴△ABD为直角三角形,

且四边形ABCD的面积为S=S△ABD﹣S△ABC

=×AB×BD﹣×AC×BC,

=×12×5﹣×3×4,

=30﹣6,

=24.

故答案为:24.

点评:

本题考查了勾股定理在实际生活中的运用,考查了直角三角形的判定,本题中连接AB分别计算AB、S△ABD、S△ABC是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网