题目内容
如图,半径为2的圆形纸片,沿半径OA、OB裁成1:3两部分,用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为______.

如图,分两种情况,
①设扇形S2做成圆锥的底面半径为R2,
由题意知:扇形S2的圆心角为270度,
则它的弧长=
=2πR2,R2=
;
②设扇形S1做成圆锥的底面半径为R1,
由题意知:扇形S1的圆心角为90度,
则它的弧长=
=2πR1,R1=
.
故答案为
或
.

①设扇形S2做成圆锥的底面半径为R2,
由题意知:扇形S2的圆心角为270度,
则它的弧长=
| 270π×2 |
| 180 |
| 3 |
| 2 |
②设扇形S1做成圆锥的底面半径为R1,
由题意知:扇形S1的圆心角为90度,
则它的弧长=
| 90π×2 |
| 180 |
| 1 |
| 2 |
故答案为
| 3 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目