题目内容
(1)试说明:∠ACB=90°;
(2)在第一象限内是否存在点P,使得以P、B、C为顶点的三角形与△AOC相似?若存在,请写出所有符合条件的点P的坐标;若不存在,请说明理由.
分析:(1)根据A,B,C的坐标得出
=
=
,进而得出△AOC∽△COB,即可得出∠ACB=90°;
(2)分别根据:①当△P1CB∽△OCA时,②当△P2CB∽△ACO时,③当△P3CB∽△AOC时,④当△P4CB∽△OAC时,利用相似三角形的判定与性质以及勾股定理求出即可.
| CO |
| BO |
| AO |
| CO |
| 1 |
| 2 |
(2)分别根据:①当△P1CB∽△OCA时,②当△P2CB∽△ACO时,③当△P3CB∽△AOC时,④当△P4CB∽△OAC时,利用相似三角形的判定与性质以及勾股定理求出即可.
解答:
(1)证明:如图1,
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
=
=
,
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)解:①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
=
,
∵AO=1,CO=2,BC=
=2
,
∴
=
,
解得:P2B=
,
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
=
=
,
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
) 2,
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
=
,
∴
=
,
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
,
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
或x=0(不合题意舍去),
故y=
,
P4的坐标为:(
,
),
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
,
)(4,10)(8,8).
∵A(-1,0),B(4,0),C(0,2),
∴CO=2,AO=1,BO=4,
∴
| CO |
| BO |
| AO |
| CO |
| 1 |
| 2 |
∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴∠1=∠OBC,
∴∠1+∠2=90°,
即∠ACB=90°;
(2)解:①当△P1CB∽△OCA时,
∴∠P1CB=∠ACO,∠P1BC=∠CAO,
∴P1C∥BO,P1B∥CO,
∴四边形P1BOC是平行四边形,
又∵∠COB=90°,
∴平行四边形P1BOC是矩形,
∴P1B=CO=2,P1C=BO=4,
∴P1点坐标为:(4,2),
②过点P2,作P2D⊥BO于点D,
当△P2CB∽△ACO时,
∴
| P2B |
| AO |
| BC |
| CO |
∵AO=1,CO=2,BC=
| 22+42 |
| 5 |
∴
| P2B |
| 1 |
2
| ||
| 2 |
解得:P2B=
| 5 |
∵∠CBP2=90°,
∴∠CBO+∠P2BD=90°,
∵∠BP2D+∠P2BD=90°,
∴∠CBO=∠BP2D,
∵∠COB=∠BDP2,
∴△COB∽△BDP2,
∴△AOC∽△BDP2,
∴
| BD |
| P2D |
| AO |
| CO |
| 1 |
| 2 |
设BD=x,则DP 2=2x,
∴x 2+(2x) 2=(
| 5 |
解得:x=1,
∴BD=1,DP 2=2,
∴P2点坐标为:(5,2),
③当△P3CB∽△AOC时,
由②同理即可得出:P3点坐标为:(1,4),
④过点P4,作P4M⊥CO于点M,P4N⊥BO于点N,
当△P4CB∽△OAC时,
∴
| P4C |
| AO |
| BC |
| AC |
∴
| P4C |
| 1 |
2
| ||
|
∴P4C=2,
则P4B=4,
设P4的坐标为:(x,y),
∴MC=y-2,P4M=x,BN=4-x,P4N=y,
∴
|
可得y=2x,
∴(2x)2+(4-x)2=16,
解得:x=
| 8 |
| 5 |
故y=
| 16 |
| 5 |
P4的坐标为:(
| 8 |
| 5 |
| 16 |
| 5 |
⑤当△AOC∽△BCP5时,P5的坐标是:(4,10);
⑥当△AOC∽△P6BC,时,P6的坐标是:(8,8);
综上所述P点坐标为:(4,2),(5,2),(1,4),(
| 8 |
| 5 |
| 16 |
| 5 |
点评:此题主要考查了相似三角形的判定与性质以及勾股定理等知识,利用数形结合以及分类讨论得出是解题关键.
练习册系列答案
相关题目