题目内容

已知抛物线顶点坐标为(1,3),且过点A(2,1).
(1)求抛物线解析式;
(2)若抛物线与x轴两交点分别为点B、C,求线段BC的长度.
考点:待定系数法求二次函数解析式,抛物线与x轴的交点
专题:计算题
分析:(1)由于已知顶点坐标,则可设顶点式y=a(x-1)2+3,然后把A点坐标代入求出a即可;
(2)计算函数值为0时的自变量的值,得到抛物线与x轴交点的横坐标,然后计算两点间的距离即可.
解答:解:(1)设抛物线解析式为y=a(x-1)2+3,
把A(2,1)代入得a•(2-1)2+3=1,解得a=-2,
所以抛物线解析式为y=-2(x-1)2+3;
(2)y=0时,-2(x-1)2+3=0,
解得x1=1+
6
2
,x2=1-
6
2

所以BC=1+
6
2
-(1-
6
2
)=
6
点评:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了抛物线与x轴的交点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网