题目内容
在,,,这四个数中,最小的数是( )
A. B. C. D.
A
等边三角形的三边之比是_______;直角三角形斜边上的中线和斜边的比是_______;
线段2 cm、8 cm的比例中项为_______cm.
已知, 点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+
∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点是与的交点,当时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP交ON于点,且满足且,
请借助图3补全图形,并求的长.
如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是______(结果保留)
某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其他类(记为D).根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
(1)七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;
(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
如图,AB与⊙O相切于点A,AC为⊙O的直径,点D在圆上,且满足∠BAD=40°,则
∠ACD的大小是( )
A.50° B.45° C.40° D.42°
= .
算式(-3)4-72-之值为何?(A) -138 (B) -122 (C) 24 (D) 40
如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).