题目内容
(2006•河南)如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为45°,塔顶C点的仰角为60度.已测得小山坡的坡角为30°,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:
【答案】分析:首先分析图形:根据题意构造直角三角形;本题涉多个直角三角形,应利用其公共边构造关系式,进而可求出答案.
解答:
解:如图,过点P作PE⊥AM于E,PF⊥AB于F.
在Rt△PME中,∵∠PME=30°,PM=40,
∴PE=20.∵四边形AEPF是矩形,
∴FA=PE=20.
设BF=x米.∵∠FPB=45°,
∴FP=BF=x.∵∠FPC=60°,
∴CF=PFtan60°=
x.∵CB=80,∴80+x=
x.
解得x=40(
+1}).
∴AB=40(
+1)+20=60+40
≈129(米).
答:山高AB约为129米.
点评:本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
解答:
在Rt△PME中,∵∠PME=30°,PM=40,
∴PE=20.∵四边形AEPF是矩形,
∴FA=PE=20.
设BF=x米.∵∠FPB=45°,
∴FP=BF=x.∵∠FPC=60°,
∴CF=PFtan60°=
解得x=40(
∴AB=40(
答:山高AB约为129米.
点评:本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目
(2006•河南)如图,∠AOB=45°,过OA上到点O的距离分别为1,2,3,4,5 …的点作OA的垂线与OB相交,再按一定规律标出一组如图所示的黑色梯形.设前n个黑色梯形的面积和为Sn.
(1)请完成上面的表格;
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.
| n | 1 | 2 | 3 | … |
| Sn | … |
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.
(2006•河南)如图,∠AOB=45°,过OA上到点O的距离分别为1,2,3,4,5 …的点作OA的垂线与OB相交,再按一定规律标出一组如图所示的黑色梯形.设前n个黑色梯形的面积和为Sn.
(1)请完成上面的表格;
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.
| n | 1 | 2 | 3 | … |
| Sn | … |
(2)已知Sn与n之间满足一个二次函数关系,试求出这个二次函数的解析式.