题目内容
如图,直线AB,CD相交于点O,OE平分,若,则的度数是 .
分式有意义的条件是 .
已知如图1,抛物线与轴交于和两点(点在点的左侧),与轴相交于点,点的坐标是(0,-1),连接、.
(1)求出直线的解析式;
(2)如图2,若在直线上方的抛物线上有一点,当的面积最大时,有一线段(点在点的左侧)在直线上移动,首尾顺次连接点、、、构成四边形,请求出四边形的周长最小时点的横坐标;
(3)如图3,将绕点逆时针旋转(),记旋转中的为,若直线与直线交于点,直线与直线交于点,当是等腰三角形时,求的值.
单项式的系数是 .
“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,CD为⊙O的直径,弦于E,如果CE = 1,AB = 10,那么直径CD的长为 .”
如图,是由7个棱长都为1的小正方体组合成的简单几何体.
(1)该几何体的表面积(含下底面)为 ;
(2)请画出这个几何体的三视图;
(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.
如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.
(1)求直线l2的函数表达式及C点坐标;
(2)求△ADC的面积;
(3)当x满足何值时,y1>y2;(直接写出结果);
(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.
几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x人,则所列方程为( )
A.
B.
C.
D.
若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx =5的解为
A. B.
C. D.