题目内容
【题目】如图,有一个可以自由转动的转盘被平均分成4个扇形,分别标有1、2、3、4四个数字,小王和小李各转动一次转盘为一次游戏.当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)求每次游戏结束得到的一组数恰好是方程x2﹣4x+3=0的解的概率.
![]()
【答案】(1)见解析;(2)
.
【解析】
(1)列表得出所有等可能的情况数即可;
(2)找出恰好是方程x2﹣3x+2=0的解的情况数,求出所求的概率即可.
(1)列表如下:
![]()
(2)所有等可能的情况有16种,其中是方程x2﹣4x+3=0的解的有(1,3),(3,1)共2种,则P(是方程解)
.
练习册系列答案
相关题目
【题目】下表显示了同学们用计算机模拟随机投针实验的某次实验的结果.
投针次数n | 1000 | 2000 | 3000 | 4000 | 5000 | 10000 | 20000 |
针与直线相交的次数m | 454 | 970 | 1430 | 1912 | 2386 | 4769 | 9548 |
针与直线相交的频率p=
| 0.454 | 0.485 | 0.4767 | 0.478 | 0.4772 | 0.4769 | 0.4774 |
下面有三个推断:
①投掷1000次时,针与直线相交的次数是454,针与直线相交的概率是0.454;
②随着实验次数的增加,针与直线相交的频率总在0.477附近,显示出一定的稳定性,可以估计针与直线相交的概率是0.477;
③若再次用计算机模拟此实验,则当投掷次数为10000时,针与直线相交的频率一定是0.4769.
其中合理的推断的序号是:_____.