题目内容
如图, 正方形ABCD的对角线相交于点 O,点O也是正方形A′B′C′O的一个顶点,如果两个正方形的边长都是2,求两个正方形重叠部分的面积。
![]()
1.
【解析】
试题分析:根据正方形性质可得∠ODE=∠OAF=45°,OA=OD,∠AOD=90°,即可求得∠DOE=∠AOF,即可证明△DOE≌△AOF,可得S△AOF=S△DOE,即可求得两个正方形重叠部分的面积=S△AOD,即可解题.
试题解析:∵AC,BD是正方形ABCD对角线,
∴∠ODE=∠OAF=45°,OA=OD,∠AOD=90°,
∵∠EOF=∠AOE+∠AOF=90°,∠AOD=∠DOE+∠AOE=90°,
∴∠DOE=∠AOF,
在△DOE和△AOF中,
,
∴△DOE≌△AOF,(ASA)
∴S△AOF=S△DOE,
∴两个正方形重叠部分的面积=S△AOE+S△AOF=S△AOE+S△DOE=S△AOD,
∵S△AOD=
S正方形ABCD=1,
∴两个正方形重叠部分的面积为1.
答:两个正方形重叠部分的面积为1.
考点:1.全等三角形的判定与性质;2.正方形的性质.
练习册系列答案
相关题目